92 2 2 9 2 6]0 1 1] 10 1 5. Koefisien korelasi. r = +1 ( kuat dan Bentuk umum dari persamaan regresi berdasarkan data-data pada tabel 13 dapat diekspresikan dalam model matematika seperti yang dapat dilihat pada persamaan berikut: 3.624 + 1.239 Xi, dengan r = 0.82 maka P = 0.6724 yang artinya kontribusi dari variasi X] terhadap variasi
DispersiData adalah data yang menggambarkan bagaimana suatu kelompok data menyebar terhadap pusatnya data atau ukuran penyebaran suatu kelompok data terhadap pusatnya data. Pusat data seperti rata-rata hitung, median dan modus hanya memberi informasi yang sangat terbatas sehingga tanpa disandingkan dengan dispersi data menjadi kurang
Tujuandari penelitian ini adalah untuk mengetahui perbedaan antara tingkat pengembalian (return), risko dan koefisien variasi pada saham syariah dan saham non syariah di Bursa Efek Indonesia (BEI) periode 2011-2013. Penelitian ini menggunakan pendekatan kuantitatif dengan uji Mann-Whitney. Data yang digunakan adalah data sekunder
E Analisis Data Analisis data adalah cara yang digunakan untuk mengolah data yang diperoleh sehingga didapatkan suatu kesimpulan (Hadi, 2000). Metode analisis data yang digunakan adalah analisis statistik. Kelebihan metode statistik untuk menganalisis adalah: a. Statistik bekerja dengan angka-angka yang menunjukan nilai atau harga. b.
Koefisienvariasi dari data 6, 10, 6, 10 adalah - 10102239 zhafirayy zhafirayy 02.04.2017 Matematika Sekolah Menengah Atas terjawab Koefisien variasi dari data 6, 10, 6, 10 adalah a. 20% b. 25 % c. 30% d. 50% e. 60% 1 Lihat jawaban Iklan Iklan ningsilalahigmailcom ningsilalahigmailcom Simpangan standar / rata rata X 100%
Koefisienvariasi adalah perbandingan antara simpangan baku dengan rata-rata suatu data dan dinyatakan dalam %. Koefisien variasi dirumuskan sebagai berikut . Keterangan . Dari data di atas lampu manakah yang lebih baik. tugas kuliah statistika : tugas statistika bab 3,4,5,6. Apr 18, 2014 · contoh ada sebuah data tunggal sebagai berikut 2
5AbM. Koefisien Variasi adalah perbandingan Simpangan Baku Standar Deviasi dengan Rata-rata Hitung dan dinyatakan dalam bentuk persentase. Kegunaan koefisien variasi adalah untuk melihat sebaran/distribusi data dari rata-rata hitungnya. Semakin kecil koefisien variasi maka data semakin homogen seragam, sedangkan semakin besar koefisien variasi maka data semakin heterogen bervariasi. Rumus Koefisien Variasi \[\boxed{kv = \frac{s}{\bar{x}} \times 100\%}\] Keterangan \kv =\ koefisien variasi \s =\ standar deviasi \\bar{x} =\ rata-rata hitung Contoh Soal Rata-rata nilai ujian statistika mahasiswa jurusan ekonomi adalah 75 dengan standar deviasi 9. Berapakah koefisien variasi nilai ujian statistika mahasiswa tersebut. Penyelesaian Diketahui \\bar{x} = 75\ dan \s = 9,\ maka koefisien variasinya adalah \[\begin{aligned} kv &= \frac{s}{\bar{x}} \times 100\%\\ &= \frac{9}{75} \times 100\%\\ &= 12\% \end{aligned}\] Koefisien variasi nilai ujian statistika mahasiswa jurusan ekonomi adalah \12\%.\ Hasil ujicoba tes IQ kepada beberapa orang mahasiswa adalah sebagai berikut \[135, 110, 140, 100, 115, 110, 130\] Hitunglah koefisien variasi hasil tes IQ mahasiswa tersebut! Penyelesaian Nilai yang dibutuhkan untuk menghitung koefisien variasi adalah rata-rata hitung \\bar{x}\ dan standar deviasi/simpangan baku \s.\ Langkah pertama yang harus kita lakukan adalah menghitung rata-rata hitung \\bar{x}\ terlebih dahulu. \[\begin{aligned} \bar{x} &= \frac{1}{n} \sum_{i=1}^{n} x_i\\ &= \frac{1}{7} 135+ 110+ 140+ 100+ 115+ 110+ 130\\ &= \frac{1}{7} 840\\ &= 120 \end{aligned}\] Selanjutnya hitung standar deviasi dengan memanfaatkan tabel berikut. \x_i\ \x_i - \bar{x}\ \x_i - \bar{x}^2\ 135 15 225 110 -10 100 140 20 400 100 -20 400 115 -5 25 110 -10 100 130 10 100 \\displaystyle \sum_{i=1}^{7} x_i - \bar{x}^2 =\ 1350 Nilai standar deviasi dihitung menggunakan rumus \[\begin{aligned} s &= \sqrt{\frac{1}{n-1} \sum_{i=1}^n x_i - \bar{x}^2}\\ &= \sqrt{\frac{1}{7-1} 1350}\\ &= \sqrt{225}\\ &= 15 \end{aligned}\] Selanjutnya koefisien korelasi dihitung dengan rumus \[\begin{aligned} kv &= \frac{s}{\bar{x}} \times 100\%\\ &= \frac{15}{120} \times 100\%\\ &= 12{,}5\% \end{aligned}\] Koefisien variasi hasil tes IQ mahasiswa adalah \12{,}5.\
Rumus Koefisien Variasi – Sebuah perbandingan antara nilai hitung rata-rata dengan simpangan standar. Dalam Koefisien terdapat rumus dan cara menghitungnya. Dalam artikel ini akan membahas secara singkat dan jelas mengenai Rumus Koefisien Variasi. Yukk.. Simak penjelasan nya sebagai berikut. Apa yang dimaksud dengan Koefisien Variasi ?Rumus Contoh Soal Soal 1Soal 2Soal 3Soal 4Soal 5 Apa yang dimaksud dengan Koefisien Variasi ? Pengertian Koefisien Variasi atau KV merupakan sistem pada sebuah perbandingan yakni antara simpangan yang standar serta nilai hitung rata-rata yang dapat dinyatakan dalam bentuk sebuah persentase. Sistem ini dapat digunakan sebagai mencari nilai rata-rata yang akan terdapat pada data suatu kelompok. Merupakan sebuah kelemahan, jika ingin membandingkan pada dua kelompok sebuah data, contohnya pada modal 10 perusahaan besar di negara AS dengan yang berada di negara Indonesia, harga sepuluh mobil juta rupiah dengan harga sepuluh ekor ayam ribuan rupiah dan berat sepuluh gajah seberat sepuluh ekor. Meskipun penyimpangan standar sebagai berat gajah atau harga mobil lebih besar, nilai tersebut tidak boleh lebih variabel atau heterogen dari berat semut dan harga ayam. Untuk perbandingan dua kelompok nilai, koefisien variasi KV digunakan, yang bebas dari unit data asli. Koefisien Variasi CV atau Koefisien Variasi adalah rasio antara standar deviasi dan harga atau nilai rata-rata yang dinyatakan sebagai persentase. Dalam menghitung suatu data yang akan menggunakan sistem yakni berupa perhitungan tersebut, bisa menggunakan suatu rumus sebagai berikut di bawah ini. Keterangan KV = Koefisien VariasiS = Simpangan Bakuχ = Nilai Rata-Rata Contoh Soal Soal 1 Terdapat variasi dari data ini 6,7,8,9,10,14 Mencari rata-rataMencari simpangan bakuMenentukan koefisisen variasi Penyelesaian Rata-rata x = 9 Simpangan BakuS = S xi – x2S = 6-92 + 7-92 + 8-92 + 9-92 + 10-92 + 14-92S = 9 + 4 + 1 + 0 + 1 + 25S = 2,6 KoefisienJadi, koefisien variasinya adalahKV = . 100%KV = . 100%KV = 28,9 % Soal 2 Pada lampu tanam yang memiliki rata-rata jam dan simpangan baku yakni 700 jam, Pada lampu kota akan dipakai dengan rata-rata jam dan memiliki simpangan .050 jam. Lalu, lampu manakah yang lebih baik dari 2 lampu tersebut? Penyelesaian Koefisien variasi lampu taman KV = S / x x 100% KV = 700/ x 100% KV = 1/4 x 100% KV = 25% Koefisien variasi lampu kota KV = S / x x 100% KV = x 100% KV = x 100% KV = 0,3 x 100% KV = 30% Dari perhitungan koefisien variasi, lampu taman lebih baik dari pada lampu kota, karena KV lampu taman < KV lampu kota. Soal 3 Terdapat nilai rata-rata kelas Multimedia dari kelas 12 Multimedia 1 ialah 80, yang memiliki simpangan 4,5. Sedangkan nilai pada rata-rata Multimedia 2 ialah 70 memiliki simpangan 5,2. Jadi, berapakah masing-masing koefisien dari kelas Multimedia tersebut? Penyelesaian Diketahui Kelas 12 Multimedia 1 x Nilai rata-rata = 80Kelas 12 Multimedia 1 s Simpangan Baku = 4,5Kelas 12 Multimedia 2 x Nilai rata-rata = 70Kelas 12 Multimedia 2 s Simpangan Baku = 5,2 Jawab Kelas 12 Multimedia 1 KV = S / χ x 100% KV = 4,5/80 x 100% KV = 5,6%Jadi nilai terhadap KV dengan kelas 12 Multimedia 1 ialah 5,6%. Kelas 12 Multimedia 2 KV = S / χ x 100% KV = 5,2 / 70 x 100% KV = 7,4%Jadi nilai KV dengan kelas 12 Multimedia 2 ialah 7,4%. Soal 4 Pada kelompok terdapat data yakni 1,5, sedangkan koefisien nya yakni 12,5%. Maka, hitunglah nilai dari sebuah data kelompok tersebut? Penyelesaian Diketahui s = 1,5 KV = 12,5% Jawab KV = S/χ x 100%12,5 = 1,5/χ x 100%12,5 = 150%/χ x = 150%/12,5% Jadi nilai rata-rata pada sebuah data kelompok ialah 12. Soal 5 Pada nilai rata-rata Ulangan Harian mata pelajaran Fisika pada kelas 12 TKJ 1 sebesar 80, yang memiliki simpangan 4,2. Maka, Hitunglah nilai koefisien dari kelas 2 TKJ 1. Penyelesaian Diketahui x Nilai Rata-rata = 80 S Simpangan Baku = 4,2 Jawab KV = S/χ x 100%KV = 4,2/80 x 100%KV = 5,25% Jadi nilai Koefisien Variasi kelas 12 TKJ 1 ialah 5,25%. Koefisien variasi berguna sebagai mengamati variasi dalam sebuah data atau sebuah distribusi data dari rata-rata yang akan dihitung. Dalam arti bahwa koefisien variasi menjadi lebih kecil, data lebih seragam lebih homogen. Sebaliknya, data lebih heterogen jika koefisien variasi lebih besar. Baca Juga Matriks SingularRumus Keliling PersegiLuas Alas Prisma Demikian artikel yang dapat kami sampaikan untuk Anda mengenai Rumus Koefisien Variasi, semoga artikel ini dapat bermanfaat untuk Anda.
Unduh PDF Unduh PDF Varians adalah ukuran seberapa tersebarnya data. Varians yang rendah menandakan data yang berkelompok dekat satu sama lain. Varians yang tinggi menandakan data yang lebih tersebar. Konsep ini memiliki banyak kegunaan di dalam statistik. Misalnya, membandingkan varians dari dua kelompok data seperti hasil dari pasien laki-laki dan perempuan adalah salah satu cara untuk menguji apakah sebuah variabel memiliki efek yang dapat diamati.[1] Varians juga berguna saat membuat model statistik, karena varians yang rendah menandakan data yang over-fitting.[2] 1 Dapatkan data sampel. Dalam banyak kasus, ahli statistik hanya mendapatkan data sampel, atau sebagian dari populasi yang sedang mereka teliti. Misalnya, alih-alih menganalisis populasi "harga setiap mobil di Jerman", seorang ahli statistik dapat mencari harga dari sampel acak beberapa ribu mobil. Ia dapat menggunakan sampel ini untuk mendapatkan estimasi harga mobil di Jerman, namun hasilnya mungkin tidak sama dengan hasil sebenarnya. Contoh Untuk menganalisis jumlah kue muffin yang terjual setiap hari di sebuah kafetaria, Anda mengumpulkan data dari enam hari acak dan memperoleh hasil sebagai berikut 17, 15, 23, 7, 9, 13. Data ini adalah sebuah sampel, bukan data populasi, karena Anda tidak mempunyai data penjualan setiap hari sejak kafetaria itu dibuka. Jika Anda memiliki "semua" data dari sebuah populasi, langsung lompat ke metode berikutnya. 2 Tuliskan rumus varians sampel. Varians dari sejumlah data menunjukkan seberapa tersebarnya data. Semakin varians mendekati nol, semakin data berkelompok. Ketika menggunakan data sampel, gunakan rumus berikut untuk menghitung varians[3] 3 Hitung mean dari sampel. Simbol x̅ menandakan mean dari sebuah sampel.[4] Hitung sebagaimana Anda menghitung mean jumlahkan semua data, lalu membaginya dengan jumlah data. Contoh Mula-mula, jumlahkan semua data 17 + 15 + 23 + 7 + 9 + 13 = 84Lalu, bagi jawabannya dengan jumlah data, dalam contoh ini dengan enam 84 ÷ 6 = sampel = x̅ = 14. Anda dapat menganggap mean sebagai "titik tengah" dari data. Jika data berkumpul di sekitar mean, variansnya rendah. Jika data tersebar jauh dari mean, variansnya tinggi. 4 Kurangkan nilai setiap data dengan mean. Sekarang kita menghitung - x̅, di mana adalah nilai dari tiap data. Setiap hasil menggambarkan deviasi data dari mean, atau dalam bahasa sederhana, seberapa jauh data dari mean.[5] . 5 Kuadratkan hasilnya. Seperti yang telah dijelaskan sebelumnya, jumlah dari seluruh nilai deviasi - x̅ akan sama dengan nol. Ini artinya "rata-rata deviasi" akan selalu sama dengan nol, dan hal ini tidak memberikan informasi apa-apa tentang sebaran data. Untuk menyelesaikan masalah ini, kita mengkuadratkan nilai setiap deviasi. Ini akan membuat angkanya menjadi positif semua, sehingga nilai negatif dan positif tidak saling menghilangkan.[6] 6 7 Bagi dengan n - 1, di mana n adalah jumlah data. Dulu, para ahli statistik hanya membagi dengan n ketika menghitung varians sampel. Dengan demikian kita mendapat nilai rata-rata dari deviasi kuadrat, yang cocok untuk menghitung varians sampel tersebut. Tetapi ingatlah, sebuah sampel hanyalah estimasi dari populasi yang lebih besar. Jika kita mengambil sampel lain secara acak dan melakukan perhitungan, hasilnya akan berbeda. Tampaknya, membagi dengan n - 1 ketimbang n memberi perkiraan nilai varians yang lebih baik untuk populasi, yang sebetulnya ingin kita ketahui. Koreksi ini sudah menjadi begitu umum sehingga sekarang diterima sebagai definisi dari varians.[7] Contoh Ada enam data di dalam contoh ini, jadi n = sampel adalah = 8 Pahami varians dan standar deviasi. Ingatlah bahwa di dalam rumus ini ada pengkuadratan, varians diukur dalam unit kuadrat dari data asli. Hal ini membuat kita sulit untuk memahami data secara intuitif. Oleh karena itu ada baiknya kita menggunakan standar deviasi. Anda tidak perlu repot-repot, karena standar deviasi didefinisikan sebagai akar kuadrat dari varians. Oleh karena itu varians sampel dituliskan dengan , dan standar deviasi sampel dengan . Misalnya, standar deviasi sampel dari contoh di atas adalah = s = √ = Iklan 1 Mulailah dengan sejumlah data populasi. Istilah "populasi" mengacu pada semua pengamatan yang relevan. Misalnya, jika kita ingin meneliti tentang usia penduduk Texas, populasi yang kita gunakan adalah usia setiap orang yang tinggal di Texas. Kita mungkin butuh membuat lembar kerja spreadsheet untuk data sebesar itu, tetapi mari kita gunakan data yang lebih kecil sebagai contoh 2 Tuliskan rumus varians populasi. Karena populasi memiliki semua data yang kita perlukan, rumus ini bisa kita gunakan untuk menghitung secara tepat varians populasi. Untuk membedakannya dengan varians sampel yang hanya estimasi, ahli statistik menggunakan variabel yang berbeda[8] 3 Cari mean populasi. Ketika menganalisis sebuah populasi, simbol μ "mu" melambangkan rata-rata aritmetik. Untuk mencari mean, jumlahkan semua data, lalu bagi dengan jumlah data. Anda mungkin mengira bahwa mean sama dengan "rata-rata". Berhati-hatilah sebab kata itu memiliki banyak definisi dalam matematika. Contoh mean = μ = = 4 Kurangkan setiap data dengan mean. Data yang lebih dekat dengan mean akan menghasilkan selisih yang lebih dekat dengan nol. Ulangi pengurangan untuk setiap data, dan Anda dapat mulai mengamati seberapa tersebarnya data. 5 Kuadratkan setiap hasil. Sekarang kita bisa melihat bahwa beberapa angka negatif dihasilkan dari proses sebelumnya, dan beberapa yang lain positif. Jika Anda membayangkan data-data tersebut pada sebuah garis bilangan, kedua kategori ini mewakili data yang berada di sebelah kiri dan sebelah kanan mean. Hal ini tidak berguna dalam menghitung varians, karena kedua kelompok ini akan saling menghilangkan. Kuadratkanlah setiap angka supaya mereka menjadi positif. 6 Cari mean dari hasil. Sekarang Anda telah memperoleh sebuah nilai untuk setiap data, yang berhubungan secara tidak langsung dengan jarak data tersebut dari mean. Cari mean dari hasil ini dengan menjumlahkan mereka semuanya, lalu dibagi dengan jumlah angka. ContohVarians dari populasi = 7 Hubungan dengan rumus semula. Jika Anda ragu apakah perhitungan ini sama dengan rumus yang diberikan di awal, coba tuliskan seluruh perhitungan secara panjang Iklan Karena kita sulit untuk menginterpretasi nilai varians, nilai ini biasanya dipakai sebagai dasar untuk menghitung standar deviasi. Penggunaan "n-1" ketimbang "n" dalam penyebut ketika menganalisis sampel adalah sebuah teknik yang dikenal dengan koreksi Bessel. Sampel hanyalah sebuah perkiraan dari seluruh populasi, dan mean dari sampel mengalami bias dalam estimasi. Koreksi ini menghilangkan bias tersebut.[9] Hal ini terjadi karena begitu Anda memilih n - 1 data, data n terakhir sudah tertentu, karena hanya nilai tertentu yang dapat menghasilkan mean dari sampel x̅ yang digunakan dalam rumus varians.[10] Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
MatematikaSTATISTIKA Kelas 12 SMAStatistika WajibRagamRagamStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0148Diketahui data 2,6,7,1,4. Varians data tersebut adalah .... 0314Hasil ulangan matematika sekelompok siswa disajikan pada ...0148Ragam dari data 30, 40, 60, 70, 50 adalah ...0243Tentukan simpangan rata-rata dan simpangan baku data beri...Teks videoDisini kita memiliki soal yang berkaitan dengan statistika yang ditanyakan adalah koefisien variasi dan rumusnya ini adalah koefisien variasinya dinotasikan sebagai kafe ini akan sama dengan f x per X bar mah esnya itu adalah simpangan baku dan X bar nya adalah rata-rata dari data nya kemudian ini akan dikalikan dengan 100% kemudian disini tentunya kita membutuhkan informasi simpangan baku dan juga rata-ratanya. Nah pertama-tama disini kita akan mencari rata-rata nya atau dinotasikan sebagai f x bar ini akan sama dengan jumlah semua datanya Ini dibagi dengan ada berapa banyak datanya di sini Jumlah semua datanya berarti kita tinggal jumlahkan saja semuanya berarti 6 + 7 + 8 + 6 + 9 + 8 + 9 + 9 + 10 kemudian dibagi dengan ada berapa banyak data nah di situ ada 9 data berarti dibagi 9Jika dihitung ini akan menjadi 72 per 9 berarti rata-ratanya itu adalah 8 untuk mencari es yaitu simpangan baku ini rumusnya itu adalah akar dari Sigma I = 1 sampai n x min x bar kuadrat per m Nah itu adalah Jumlah Berapa banyak datanya Nah di sini kan tadi sudah kita hitung bawa nggak tanya itu ada 9 berarti airnya itu adalah 9 Kemudian untuk aksinya itu berarti X1 X2 dan seterusnya. Nah ini kita lihat dari datanya berarti 6 ini x 17 x 28 x 3 dan seterusnya dengan demikian di sini kita akan mendapatkan rumus atau persamaan simpangan baku yaitu adalah di sini 6 - 8 karena kan x 1 dikurangi dengan rata-ratanya yaitu 8 ini di kuadrat Kemudian ditambahkan dengan 7 milikuadrat ditambah 8 Min 8 kuadrat + 68 kuadrat + 9 Min 8 kuadrat + 8 Min 8 kuadrat ditambah 9 Min 8 kuadrat ditambah 9 Min 8 kuadrat + 10 Min 8 kuadrat lalu ini semua akan dibagi dengan n ingat ini adalah 9 dan ini di akar jika kita jumlahkan di sini kita akan mendapatkan akar dari total yang atas itu adalah 16 per 9 Nah ini jika diakarkan berarti jadi akar 16 per Akar 9 hasilnya adalah 4 per 3 dengan demikian disini kita bisa mendapatkan koefisien variasinya atau Cafe ini = X per X bar s-nya itu adalah 4 per 3 per X bar nyata rata-ratanya itu adalah 8Ini jika kita hitung hasilnya adalah 1/6 atau misalnya jika kita ingin hasilnya itu dalam persen berarti cafenya atau koefisien variasinya itu adalah 1 per 6 dikali 100% Ini hasilnya itu adalah 53% dengan demikian jawabannya itu tidak ada di pilihannya sampai jumpa di pertanyaan berikutnya.
Discover the world's research25+ million members160+ million publication billion citationsJoin for free Persentase Statistika Pendidikan Matematika Ukuran VariasiDi presentasikan pada kuliah Statistika Pendidikan Matematika Program Pascasarjana Universitas Negeri Medan Prodi Pendidikan MatematikaOleh Rizki Kurniawan Rangkuti Ukuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil PkUkuran Variasi•Range Range atau Jangkauan•Simpangan Absolut Rata-rata Mean Absolut Deviation •Ragam Variance dan Standar Deviasi•Koefisien Variasi•Kuartil Q•Persentil Pk Ukuran VariasiUkuran pemusatan dapat digunakan untuk menampilkan ringkasan data dalam suatu nilai tunggal yang menunjukkan rata-rata distribusi. Sekumpulan data mempunyai unsur-unsur yang nilainya bervariasi dan dua distribusi data atau lebih mungkin memiliki nilai pusat yang sama tetapi variasinya berbeda. Ilustrasi berikut dapat menunjukkan kondisi tersebut Departemen Produksi PT STAR’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997 adalah 6 7 8 7 7Departemen Produksi PT FRESH’•Output 5 pekerjanya dalam unit pada tanggal 1 Januari 1997adalah 3 5 7 9 11Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Rata-rata output pekerja keduanya sama, yaitu 7 unit/hari. Meskipun demikian hasil produksi para pekerja di PT FRESH’ lebih bervariasi daripada di PT STAR’. Bila diperoleh nilai ukuran variasi yang kecil berarti tingkat keragaman data rendah, nilai-nilai observasi banyak terkonsentrasi disekitar nilai pusat. Sebaliknya bila nilai ukuran variasi yang diperoleh besar maka tingkat keragaman data besar, karena nilai-nilai observasi yang diperoleh saling berjauhan. Ukuran variasi dibedakan menjadi ukuran variasi absolut dan ukuran variasi ukuran variasi antara lain range, simpangan absolut rata-rata, variance dan standar deviasi, dan koefisien variasi, Ukuran variasi absolut digunakan untuk membandingkan suatu ukuran variasi dengan ukuran variasi lain dalam populasi yang sama.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang variasi relatif pada umumnya digunakan untuk membandingkan beberapa ukuran variasi dari beberapa populasi dengan unit pengukuran yang berbeda.•Biasanya ukuran variasi absolut ini dinyatakan dalam satuan ukuran yang berbeda. A. Range Rentang atau JangkauanRange adalah selisih antara nilai maksimum dengan nilai minimum dalam suatu gugus data. Sesuai dengan rumusnya, range dicari dengan melibatkan dua nilai saja, yaitu nilai terbesar dan nilai terkecil. Sebagai contoh diketahui nilai minimumnya $ dan maksimumnya $ Maka rentang range adalah $ - $ = $ B. Simpangan Absolut Rata-Rata Mean Absolut Deviation = MADSimpangan absolut rata-rata adalah jumlah mutlak penyimpangan setiap nilai pengamatan nilai rata-rata, dibagi banyaknya pengamatan. Simpangan absolut rata-rata mencerminkan rata-rata selisih mutlak nilai data terhadap nilai rata-rata. Untuk data yang tidak berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasiNXXMADNii1iXXN Untuk data yang berkelompok, simpangan absolut rata-rata MAD dapat dihitung dari Dimana = Nilai data ke i = Rata-rata hitung = Banyaknya observasi = Frekuensi kelas ke-i i=1,2,3,...,kiXXNNXXfMADNiii1if C. Ragam Variance dan Standar DeviationRagam variance adalah jumlah kuadrat dari selisih nilai observasi dengan rata-rata hitung dibagi banyaknya observasi. Sedangkan standar deviasi adalah akar dari ragam tersebut. Ragam populasi yang tidak berkelompok dapat dihitung dengan formula NNXXNXNiNiiiNii1212122 Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. Untuk sampel, ragam populasi yang tidak berkelompok dapat dihitung dengan formula Perhatikan adanya perbedaan pembagi pada ragam populasi N dengan pada ragam sampel n-1. Perbedaan ini dilakukan dalam rangka memperoleh ragam sampel yang merupakan penduga tak bias bagi ragam populasi. 111212122nnXXnXXSniniiinii Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan Ragam populasi yang berkelompok dapat dihitung dengan formula Untuk sampel, ragam populasi yang berkelompok dapat dihitung dengan pendekatan NNXfXfNiNiiiii12122..1..12122nnXfXfSniniiiii D. Koefisien Variasi Koefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. D. Koefisien VariasiKoefisien variasi merupakan ukuran variasi relatif yang bertujuan membandingkan variasi dari beberapa gugus data yang mempunyai satuan berbeda. Koefisien variasi KV bebas dari satuan data aslinya dan tidak tergantung pada unit pengukuran yang digunakan. Karena KV tidak mempunyai satuan, maka parameter-parameter yang sama dari kondisi yang memiliki unit pengukuran berbeda pun dapat dibandingkan. Koefisien variasi diperoleh dengan rumus untuk populasi untuk sampel%100.KV% E. Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai Kuartil Q Kuartil merupakan nilai-nilai yang membagi data yang telah diurutkan menjadi empat bagian yang sama, sehingga dalam suatu gugus data didapati 3 kuartil kuartil 1, kuartil 2 atau median, dan kuartil 3. Pemaparan kuartil di bagian ukuran variasi ini didasarkan pada pertimbangan bahwa nilai-nilai kuartil dapat menunjukkan adanya nilai-nilai ekstrem. Rumus kuartil untuk data berkelompok adalah Dimana Qk = Kuartil ke kB1 = Batas bawah nyata kelas yang mengandung Qk cfb = Frekuensi komulatif di bawah kelas yang berisi QkfQ = Frekuensi kelas yang mengandung Qki = Interval Kelask = 1, 2, 3N = Banyaknya F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah F. Persentil Pk Pada umumnya persentil digunakan untuk membagi data bergolong menjadi 100 bagian yang sama. Karakter persentil mirip dengan kuartil, pembedanya pada per seratusan data yang telah diurutkan. Rumus persentil untuk data berkelompok adalah Dimana Pk = Persentil ke kB1 = Batas bawah nyata kelas yang mengandung persentil ke-kcfb = Frekuensi komulatif di bawah kelas yang berisi Pk i = Interval Kelasfp = Frekuensi kelas yang mengandung Pkk = 1, 2, 3,...,99N = Banyaknya observasi Terima Kasih Atas Perhatiannya ResearchGate has not been able to resolve any citations for this has not been able to resolve any references for this publication.
koefisien variasi dari data 6 10 6 10 adalah